

Coenzyme I NAD+/NADH Content Assay Kit

辅酶 I NAD+/NADH 含量测定试剂盒 微板法

产品编号	产品名称	规格
BL1482B	辅酶 I NAD+/NADH 含量测定试剂盒 微板法	96T

产品简介:

烟酰胺核苷酸的测定一直是细胞或组织在能量转化和氧化还原状态方面的研究热点。NAD+是糖酵解(EMP)和三羧酸循环(TCA)的主要氢受体,其NAD+/NADH比值的高低不仅可用于评价糖酵解和TCA循环的强弱,而且在生物物质合成和抗氧化代谢中具有重要调控作用。

本试剂盒提供一种方便,快速的检测方法,提供特异性提取液分别提取样品中的 NAD+和 NADH,NADH 在递氢体作用下与一种高灵敏度的显色剂反应生成黄色水溶性甲瓒,在450nm 下检测,得到 NADH 含量。利用乙醇脱氢酶特异性还原 NAD+为 NADH,从而检测 NAD+含量。

产品组成:

-	21/M•						
	试剂名称	规格	保存要求	备注			
	提取液A	液体120mL×1瓶	4℃保存				
	提取液B	液体120mL×1瓶	4℃保存				
	试剂一	液体×1支	-20℃保存	用前用1.1mL蒸馏水溶解			
	试剂二	粉末×1支	-20℃保存	用前用1.1mL蒸馏水溶解			
	试剂三	液体20mL×1瓶	4℃保存				
	试剂四	液体1.1mL×1支	4℃保存				
	标准品	粉末×1支	-20℃保存	若重新做标曲,则用到该试剂			

使用方法:

建议正式实验前,选取 2 个样本做预测定,了解实验样品情况,熟悉流程,避免样本和试剂浪费。

一、样本准备

- 1. 组织样本准备:
- (a) NAD+的提取:

取约 0.1g 组织(水分充足样本可取 0.5g),加入 1mL 提取液 A,冰浴研磨,全部转移到 离心管中(用提取液 A 补齐到 1mL),植物样本于 95°C孵育 5min 或动物样本于 60°C孵育 30min,取出后立即冰浴(或放冰箱)5min; 12000rpm 4 °C离心 10min; 取 500μ L 上清液至新离心管中,再加 V1 体积的提取液 B 中和(可分次添加提取液 B,调至 PH 约中性,记录提取液 B 加入体积为 V1); 12000rpm, 4°C离心 5min,取上清液置于冰上待测。

(b) NADH 的提取:

取约 0.1g 组织(水分充足样本可取 0.5g),加入 1mL 提取液 B,冰浴研磨,全部转移到 离心管中(用提取液 B 补齐到 1mL),植物样本于 95°C孵育 5min 或动物样本于 60°C孵育 30min,取出后立即冰浴(或放冰箱)5min; 12000rpm 4 °C离心 10min; 取 500μ L 上清液至新离心管中,再加 V2 体积的提取液 A 中和(可分次添加提取液 A,调至 PH 约中性,**记录提取液 A 加**

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

入体积为 V2);12000rpm,4 ℃离心 5min,取上清液置于冰上待测。

【注】: 若测出值较低, 可加大样本取样量, 如增加到 0.2g 等, 可做几个梯度选择适合本次实验的样本量。

- 2. 细菌/细胞样本准备:
- (a) NAD+的提取:

先收集细胞或细菌到离心管内:取约 5×10^6 个细菌或细胞加入 1ml 提取液 A,冰浴研磨,全部转移到离心管中(用提取液 A 补齐到 1mL),于 60° C孵育 30min,取出后立即冰浴(或放冰箱)5min;12000rpm 4° C离心 10min;取 500μ L 上清液至新离心管中,再加 V1 体积的提取液 B 中和(可分次添加提取液 B,调至 PH 约中性,记录提取液 B 加入体积为 V1);12000rpm, 4° C离心 5min,取上清液置于冰上待测。

(b) NADH 的提取:

先收集细胞或细菌到离心管内:取约 5×10^6 个细菌或细胞加入 1mL 提取液 B,冰浴研磨,全部转移到离心管中(用提取液 B 补齐 1mL),于 60° C孵育 30min,取出后立即冰浴(或放冰箱)5min; 12000rpm $4 ^{\circ}$ C离心 10min; 取 500μ L 上清液至新离心管中,再加 V2 体积的提取液 A 中和(可分次添加提取液 A,调至 PH 约中性,记录提取液 A 加入体积为 V2); 12000rpm $4 ^{\circ}$ C离心 5min,取上清置于冰上待测。

【注】: 若测出值较低,可加大样本取样量,如增至 1×107个等,可做几个梯度选适合本次实验的样本量。

- 3. 液体样本准备:
- (a) NAD+的提取:

在离心管中加入约 0.1 mL 液体样本,然后再加入 1 mL 提取液 A (用提取液 A 补齐到 1.1 mL),于 $95 ^{\circ}$ C 解育 5 min,取出后立即冰浴(或放冰箱) 5 min; 12000 rpm $4 ^{\circ}$ C 离心 10 min; 取 $500 \mu \text{L}$ 上清液至新离心管中,再加 V1 体积的提取液 B 中和(可分次添加提取液 B,调至 PH 约中性,记录提取液 B 加入体积为 V1); 12000 rpm $4 ^{\circ}$ C 离心 5 min,取上清置冰上待测。

(b) NADH 的提取:

在离心管中加入约 0.1mL 液体样本,然后再加入 1mL 提取液 B(用提取液 B 补齐到 1.1mL),于 95℃解育 5min,取出后立即冰浴(或放冰箱)5min;12000rpm 4 ℃离心 10min;取 500μL 上清液至新离心管中,再加 V2 体积的提取液 A 中和(可分次添加提取液 A,调至 PH 约中性,记录提取液 A 加入体积为 V2);12000rpm 4 ℃离心 5min,取上清液置于冰上待测。

【注】:若测出值较低,可加大样本取样量,如增至 0.5 mL 等,可做几个梯度选择适合本次实验的样本量。

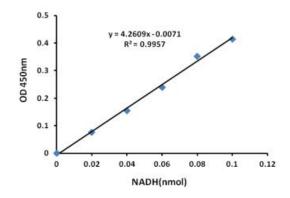
二、样品测定

- 1. 酶标仪预热 30min 以上,温度设定 37℃,调节波长至 450nm。
- 2. 在96 孔板中依次加入:

试剂名称(μL)	测定管			
样本	20			
试剂一	10			
试剂二	10			
试剂三	150			
37℃避光孵育 10min				
试剂四	10			
混匀,37℃条件下,立即在450nm 处测定吸光值 A1,30min				

后再测定 A2,ΔA=A2-A1。

【注】若 ΔA 过小,可加大样本取样质量 W;或增加样本量 V1(由 20 增至 40 μL ,则试剂三相应减少),或延长反应时间(如:60 \min 或更长),则改变后的相应变量需代入计算公式重新计算。


一、含量计算

1. 标准曲线: y = 4.2609x - 0.0071: x 是 NADH 摩尔质量(nmol), y 是ΔA。

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意: 在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

2. NAD+含量的计算:

(1)按样本鲜重计算:

 NAD^+ (nmol/g 鲜重)=[($\triangle A+0.0071$)÷4.2609]÷(W÷2×V÷V3)=23.47×($\triangle A+0.0071$)×(0.5+V1)÷W (2)按细菌或细胞密度计算:

 NAD^{+} (nmol/10⁴ cell)=[($\triangle A$ +0.0071)÷4.2609]÷(500÷2×V 样÷V3)=0.047×($\triangle A$ +0.0071)×(0.5+V1) (3)液体中 NAD^{+} 含量计算:

NAD+含量(nmol/mL) = [(\triangle A+0.0071)÷4.2609]÷(V 液÷2×V 样÷V3)=234.7×(\triangle A +0.0071)×(0.5+V1)

3. NADH 含量的计算:

(1)按样本鲜重计算:

NADH (nmol/g 鲜重)=[(\triangle A+0.0071)÷4.2609]÷(W÷2×V÷V4)=23.47×(\triangle A+0.0071)×(0.5+V2)÷W (2)按细菌或细胞密度计算:

NADH (nmol/ 10^4 cell) =[(\triangle A+0.0071)÷4.2609]÷(500÷2×V÷V4)=0.047×(\triangle A+0.0071)×(0.5+V2) (3)液体中 NADH 含量计算:

NADH 含量(nmol/mL) =[(\triangle A+0.0071)÷4.2609]÷(V 液÷2×V 样÷V4)=234.7×(\triangle A+0.0071) ×(0.5+V2)

V样----加入反应体系中样本体积,0.02mL V液----所取液体样本体积:0.1mL

V3---NAD+提取液体积, 0.5mL 提取液 A+ V1mL 提取液 B= (0.5+V1) mL

V4---NADH 提取液体积, 0.5mL 提取液 B+ V2mL 提取液 A= (0.5+V2) mL

W----样本质量, g 500----细胞或细菌总数, 500 万

NADH 分子量----663.4

附:标准曲线制作过程:

- 1. 制备标准品母液(1μmol/mL): 向标准品离心管里面加入 1.41mL 蒸馏水(NADH 不太稳定,取出 NADH 后请尽快使用。如果发现标准曲线不理想,很有可能是标准品发生了降解)。
- 2. 把母液稀释成六个浓度梯度的标准品: 0, 1, 2, 3, 4, 5 nmol/mL。也可根据实际样本来调整标准品浓度。
- 3. 依据测定管的加样表操作,根据结果即可制作标准曲线。

注意事项:

- 1. 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品。
- 2. 为了您的安全和健康,请穿实验服并戴一次性手套操作。

有效期:

-20℃保存六个月。

Note: For in vitro research use only, not for diagnostic or therapeutic use, This product is not a medical device. 注意:在体外研究使用,不用于诊断或治疗用途,本产品不是医疗装置。

